Alireza Fathi; Zbigniew Wojna; Vivek Rathod; Peng Wang; Hyun Oh Song; Sergio Guadarrama; Kevin P. Murphy

Abstract
We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embedding model. Our grouping method is based on selecting all points that are sufficiently similar to a set of "seed points", chosen from a deep, fully convolutional scoring model. We show competitive results on the Pascal VOC instance segmentation benchmark.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| object-proposal-generation-on-pascal-voc-2012 | inst-DML | Average Recall: 0.667 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.