Bin Xiao Haiping Wu Yichen Wei

Abstract
There has been significant progress on pose estimation and increasing interests on pose tracking in recent years. At the same time, the overall algorithm and system complexity increases as well, making the algorithm analysis and comparison more difficult. This work provides simple and effective baseline methods. They are helpful for inspiring and evaluating new ideas for the field. State-of-the-art results are achieved on challenging benchmarks. The code will be available at https://github.com/leoxiaobin/pose.pytorch.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| 2d-human-pose-estimation-on-jhmdb-2d-poses | SimplePose | PCK: 94.4 |
| 2d-human-pose-estimation-on-ochuman | ResNet-152 | Test AP: 33.3 Validation AP: 41.0 |
| 2d-human-pose-estimation-on-ochuman | ResNet-50 | Test AP: 30.4 Validation AP: 37.8 |
| keypoint-detection-on-coco | ResNet-50 | Validation AP: 72.2 |
| keypoint-detection-on-coco-test-challenge | Simple Base+* | AP: 74.5 AP50: 90.9 AP75: 80.8 APL: 87.5 AR: 80.5 AR50: 95.1 AR75: 86.3 ARL: 82.9 ARM: 75.3 |
| keypoint-detection-on-coco-test-dev | Simple Base | AP50: 91.9 AP75: 81.1 APL: 80.0 APM: 70.3 AR: 79.0 |
| keypoint-detection-on-coco-test-dev | Simple Base+* | AP50: 92.4 AP75: 84.0 APL: 82.7 APM: 73.0 AR: 81.5 AR50: 95.8 AR75: 88.2 ARL: 87.2 ARM: 77.4 |
| keypoint-detection-on-ochuman | ResNet-50 | Test AP: 29.5 Validation AP: 32.1 |
| keypoint-detection-on-ochuman | ResNet-152 | Test AP: 33.3 Validation AP: 41.0 |
| multi-person-pose-estimation-on-crowdpose | Simple baseline | AP Easy: 71.4 AP Hard: 51.2 AP Medium: 61.2 mAP @0.5:0.95: 60.8 |
| multi-person-pose-estimation-on-ochuman | SimplePose | AP50: 37.4 AP75: 26.8 Validation AP: 24.1 |
| pose-estimation-on-aic | SimpleBaseline (ResNet-152) | AP: 29.9 AP50: 73.8 AP75: 18.3 AR: 34.3 AR50: 76.9 |
| pose-estimation-on-aic | SimpleBaseline (ResNet-101) | AP: 29.4 AP50: 73.6 AP75: 17.4 AR: 33.7 AR50: 76.3 |
| pose-estimation-on-aic | SimpleBaseline (ResNet-50) | AP: 28.0 AP50: 71.6 AP75: 15.8 AR: 32.1 AR50: 74.1 |
| pose-estimation-on-coco-test-dev | Flow-based (ResNet-152) | AP: 73.7 AP50: 91.9 AP75: 81.1 APL: 80 APM: 70.3 AR: 79 |
| pose-estimation-on-coco-val2017 | SimpleBaseLine (256x192) | AP: 70.4 AP50: - AP75: - AR: - |
| pose-estimation-on-ochuman | ResNet-152 | Test AP: 33.3 Validation AP: 41.0 |
| pose-estimation-on-ochuman | ResNet-50 | Test AP: 29.5 Validation AP: 32.1 |
| pose-tracking-on-posetrack2017 | MSRA (FlowTrack) | MOTA: 57.81 mAP: 74.57 |
| pose-tracking-on-posetrack2018 | MSRA | MOTA: 61.37 mAP: 74.03 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.