DiT: Self-supervised Pre-training for Document Image Transformer
DiT: Self-supervised Pre-training for Document Image Transformer
Junlong Li Yiheng Xu Tengchao Lv Lei Cui Cha Zhang Furu Wei

Abstract
Image Transformer has recently achieved significant progress for natural image understanding, either using supervised (ViT, DeiT, etc.) or self-supervised (BEiT, MAE, etc.) pre-training techniques. In this paper, we propose \textbf{DiT}, a self-supervised pre-trained \textbf{D}ocument \textbf{I}mage \textbf{T}ransformer model using large-scale unlabeled text images for Document AI tasks, which is essential since no supervised counterparts ever exist due to the lack of human-labeled document images. We leverage DiT as the backbone network in a variety of vision-based Document AI tasks, including document image classification, document layout analysis, table detection as well as text detection for OCR. Experiment results have illustrated that the self-supervised pre-trained DiT model achieves new state-of-the-art results on these downstream tasks, e.g. document image classification (91.11 → 92.69), document layout analysis (91.0 → 94.9), table detection (94.23 → 96.55) and text detection for OCR (93.07 → 94.29). The code and pre-trained models are publicly available at \url{https://aka.ms/msdit}.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| document-image-classification-on-rvl-cdip | DiT-B | Accuracy: 92.11% Parameters: 87M |
| document-image-classification-on-rvl-cdip | DiT-L | Accuracy: 92.69% Parameters: 304M |
| document-layout-analysis-on-publaynet-val | DiT-L | Figure: 0.972 List: 0.960 Overall: 0.949 Table: 0.978 Text: 0.944 Title: 0.893 |
| table-detection-on-ctdar | DiT-B (Cascade) | Weighted Average F1-score: 96.14 |
| table-detection-on-ctdar | DiT-L (Cascade) | Weighted Average F1-score: 96.55 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.