Revisiting Image Pyramid Structure for High Resolution Salient Object
Detection
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
Taehun Kim Kunhee Kim Joonyeong Lee Dongmin Cha Jiho Lee Daijin Kim

Abstract
Salient object detection (SOD) has been in the spotlight recently, yet hasbeen studied less for high-resolution (HR) images. Unfortunately, HR images andtheir pixel-level annotations are certainly more labor-intensive andtime-consuming compared to low-resolution (LR) images and annotations.Therefore, we propose an image pyramid-based SOD framework, Inverse SaliencyPyramid Reconstruction Network (InSPyReNet), for HR prediction without any ofHR datasets. We design InSPyReNet to produce a strict image pyramid structureof saliency map, which enables to ensemble multiple results with pyramid-basedimage blending. For HR prediction, we design a pyramid blending method whichsynthesizes two different image pyramids from a pair of LR and HR scale fromthe same image to overcome effective receptive field (ERF) discrepancy. Ourextensive evaluations on public LR and HR SOD benchmarks demonstrate thatInSPyReNet surpasses the State-of-the-Art (SotA) methods on various SOD metricsand boundary accuracy.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| dichotomous-image-segmentation-on-dis-te1 | InSPyReNet (HR scale) | E-measure: 0.894 HCE: 110 MAE: 0.045 S-Measure: 0.873 max F-Measure: 0.845 weighted F-measure: 0.788 |
| dichotomous-image-segmentation-on-dis-te1 | InSPyReNet | HCE: 148 S-Measure: 0.862 max F-Measure: 0.834 |
| dichotomous-image-segmentation-on-dis-te2 | InSPyReNet (HR scale) | HCE: 255 S-Measure: 0.905 max F-Measure: 0.894 |
| dichotomous-image-segmentation-on-dis-te2 | InSPyReNet | E-measure: 0.925 HCE: 316 MAE: 0.038 S-Measure: 0.893 max F-Measure: 0.881 weighted F-measure: 0.834 |
| dichotomous-image-segmentation-on-dis-te3 | InSPyReNet (HR scale) | E-measure: 0.938 HCE: 522 MAE: 0.034 S-Measure: 0.918 max F-Measure: 0.919 weighted F-measure: 0.871 |
| dichotomous-image-segmentation-on-dis-te3 | InSPyReNet | E-measure: 0.938 HCE: 582 MAE: 0.038 S-Measure: 0.902 max F-Measure: 0.904 weighted F-measure: 0.856 |
| dichotomous-image-segmentation-on-dis-te4 | InSPyReNet | E-measure: 0.926 HCE: 2243 MAE: 0.046 S-Measure: 0.891 max F-Measure: 0.892 weighted F-measure: 0.840 |
| dichotomous-image-segmentation-on-dis-te4 | InSPyReNet (HR scale) | E-measure: 0.926 HCE: 2336 MAE: 0.042 S-Measure: 0.905 max F-Measure: 0.905 weighted F-measure: 0.848 |
| dichotomous-image-segmentation-on-dis-vd | InSPyReNet (HR scale) | HCE: 904 S-Measure: 0.900 max F-Measure: 0.889 |
| dichotomous-image-segmentation-on-dis-vd | InSPyReNet | E-measure: 0.921 HCE: 905 MAE: 0.043 S-Measure: 0.887 max F-Measure: 0.876 weighted F-measure: 0.826 |
| rgb-salient-object-detection-on-davis-s | InSPyReNet (DUTS, HRSOD) | F-measure: 0.976 S-measure: 0.972 mBA: 0.770 |
| rgb-salient-object-detection-on-davis-s | InSPyReNet | F-measure: 0.959 MAE: 0.009 S-measure: 0.962 mBA: 0.743 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet (HRSOD, UHRSD) | MAE: 0.018 S-Measure: 0.956 mBA: 0.771 max F-Measure: 0.956 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet (DUTS, HRSOD) | MAE: 0.014 S-Measure: 0.960 mBA: 0.766 max F-Measure: 0.957 |
| rgb-salient-object-detection-on-hrsod | InSPyReNet | MAE: 0.016 S-Measure: 0.952 mBA: 0.738 max F-Measure: 0.949 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet (HRSOD, UHRSD) | MAE: 0.020 S-Measure: 0.953 mBA: 0.812 max F-Measure: 0.957 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet (DUTS, HRSOD) | S-Measure: 0.936 mBA: 0.785 |
| rgb-salient-object-detection-on-uhrsd | InSPyReNet | MAE: 0.029 S-Measure: 0.932 mBA: 0.741 max F-Measure: 0.938 |
| salient-object-detection-on-dut-omron | InSPyReNet | F-measure: 0.832 MAE: 0.045 S-Measure: 0.875 |
| salient-object-detection-on-duts-te | InSPyReNet | MAE: 0.024 S-Measure: 0.931 max F-measure: 0.892 |
| salient-object-detection-on-ecssd | InSPyReNet | F-measure: 0.96 MAE: 0.031 S-Measure: 0.936 |
| salient-object-detection-on-hku-is | InSPyReNet | F-measure: 0.955 MAE: 0.028 S-Measure: 0.944 |
| salient-object-detection-on-pascal-s | InSPyReNet | F-measure: 0.893 MAE: 0.048 S-Measure: 0.893 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.