HyperAIHyperAI

Command Palette

Search for a command to run...

4 days ago

Chain-of-Thought Hijacking

Jianli Zhao Tingchen Fu Rylan Schaeffer Mrinank Sharma Fazl Barez

Chain-of-Thought Hijacking

Abstract

Large reasoning models (LRMs) achieve higher task performance with more inference-time computation, and prior works suggest this scaled reasoning may also strengthen safety by improving refusal. Yet we find the opposite: the same reasoning can be used to bypass safeguards. We introduce Chain-of-Thought Hijacking, a jailbreak attack on reasoning models. The attack pads harmful requests with long sequences of harmless puzzle reasoning. Across HarmBench, CoT Hijacking reaches a 99%, 94%, 100%, and 94% attack success rate (ASR) on Gemini 2.5 Pro, GPT o4 mini, Grok 3 mini, and Claude 4 Sonnet, respectively - far exceeding prior jailbreak methods for LRMs. To understand the effectiveness of our attack, we turn to a mechanistic analysis, which shows that mid layers encode the strength of safety checking, while late layers encode the verification outcome. Long benign CoT dilutes both signals by shifting attention away from harmful tokens. Targeted ablations of attention heads identified by this analysis causally decrease refusal, confirming their role in a safety subnetwork. These results show that the most interpretable form of reasoning - explicit CoT - can itself become a jailbreak vector when combined with final-answer cues. We release prompts, outputs, and judge decisions to facilitate replication.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Chain-of-Thought Hijacking | Papers | HyperAI