HyperAIHyperAI

Command Palette

Search for a command to run...

2 days ago

Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models

Xiang Hu Zhanchao Zhou Ruiqi Liang Zehuan Li Wei Wu Jianguo Li

Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models

Abstract

This work explores the challenge of building ``Machines that Can Remember'', framing long-term memory as the problem of efficient ultra-long context modeling. We argue that this requires three key properties: \textbf{sparsity}, \textbf{random-access flexibility}, and \textbf{length generalization}. To address ultra-long-context modeling, we leverage Hierarchical Sparse Attention (HSA), a novel attention mechanism that satisfies all three properties. We integrate HSA into Transformers to build HSA-UltraLong, which is an 8B-parameter MoE model trained on over 8 trillion tokens and is rigorously evaluated on different tasks with in-domain and out-of-domain context lengths to demonstrate its capability in handling ultra-long contexts. Results show that our model performs comparably to full-attention baselines on in-domain lengths while achieving over 90% accuracy on most in-context retrieval tasks with contexts up to 16M. This report outlines our experimental insights and open problems, contributing a foundation for future research in ultra-long context modeling.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models | Papers | HyperAI