GTM-UVigo Systems for the Query-by-Example Search on Speech Task at MediaEval 2015
GTM-UVigo Systems for the Query-by-Example Search on Speech Task at MediaEval 2015
{Carmen Garcia-Mateo Laura Docio-Fernandez Paula Lopez-Otero}

Abstract
In this paper, we present the systems developed by GTMUVigo team for the query by example search on speech task (QUESST) at MediaEval 2015. The systems consist in a fusion of 11 dynamic time warping based systems that use phoneme posteriorgrams for speech representation; the primary system introduces a technique to select the most relevant phonetic units on each phoneme decoder, leading to an improvement of the search results.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| keyword-spotting-on-quesst | GTM-UVigo Contrastive (eval) | Cnxe: 0.999 MinCnxe: 0.923 lowerbound : 0.633 |
| keyword-spotting-on-quesst | GTM-UVigo Contrastive (dev) | Cnxe: 0.998 MinCnxe: 0.918 lowerbound : 0.635 |
| keyword-spotting-on-quesst | GTM-UVigo Primary late submission (eval) | Cnxe: 0.871 MinCnxe: 0.838 lowerbound : 0.592 |
| keyword-spotting-on-quesst | GTM-UVigo Contrastive late submission (dev) | Cnxe: 0.907 MinCnxe: 0.864 lowerbound : 0.618 |
| keyword-spotting-on-quesst | GTM-UVigo Contrastive late submission (eval) | Cnxe: 0.989 MinCnxe: 0.852 lowerbound : 0.613 |
| keyword-spotting-on-quesst | GTM-UVigo Primary (eval) | Cnxe: 0.919 MinCnxe: 0.905 lowerbound : 0.629 |
| keyword-spotting-on-quesst | GTM-UVigo Primary (dev) | Cnxe: 0.917 MinCnxe: 0.905 lowerbound : 0.627 |
| keyword-spotting-on-quesst | GTM-UVigo Primary late submission (dev) | Cnxe: 0.875 MinCnxe: 0.847 lowerbound : 0.593 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.