HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Image Generation
Image Generation On Ffhq 1024 X 1024
Image Generation On Ffhq 1024 X 1024
Metrics
FID
Results
Performance results of various models on this benchmark
Columns
Model Name
FID
Paper Title
StyleALAE
13.09
Adversarial Latent Autoencoders
CIPS
10.07
Image Generators with Conditionally-Independent Pixel Synthesis
HiT-B
6.37
Improved Transformer for High-Resolution GANs
MSG-StyleGAN
5.8
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
StyleSwin
5.07
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleGAN
4.4
A Style-Based Generator Architecture for Generative Adversarial Networks
StyleNAT
4.17
StyleNAT: Giving Each Head a New Perspective
SWAGAN-Bi
4.06
SWAGAN: A Style-based Wavelet-driven Generative Model
StyleGAN2 ADA+bCR
3.62
Training Generative Adversarial Networks with Limited Data
FQ-GAN
3.19
Feature Quantization Improves GAN Training
StyleGAN3-R
3.07
Alias-Free Generative Adversarial Networks
StyleGAN2
2.84
Analyzing and Improving the Image Quality of StyleGAN
Diffusion StyleGAN2
2.83
Diffusion-GAN: Training GANs with Diffusion
StyleGAN3-T
2.79
Alias-Free Generative Adversarial Networks
MaGNET-StyleGAN2
2.66
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Polarity-StyleGAN2
2.57
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
StyleGAN-XL
2.02
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
StyleSAN-XL
1.61
SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
Very Deep VAE
-
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
Efficient-VDVAE
-
Efficient-VDVAE: Less is more
0 of 20 row(s) selected.
Previous
Next
HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Image Generation
Image Generation On Ffhq 1024 X 1024
Image Generation On Ffhq 1024 X 1024
Metrics
FID
Results
Performance results of various models on this benchmark
Columns
Model Name
FID
Paper Title
StyleALAE
13.09
Adversarial Latent Autoencoders
CIPS
10.07
Image Generators with Conditionally-Independent Pixel Synthesis
HiT-B
6.37
Improved Transformer for High-Resolution GANs
MSG-StyleGAN
5.8
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
StyleSwin
5.07
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleGAN
4.4
A Style-Based Generator Architecture for Generative Adversarial Networks
StyleNAT
4.17
StyleNAT: Giving Each Head a New Perspective
SWAGAN-Bi
4.06
SWAGAN: A Style-based Wavelet-driven Generative Model
StyleGAN2 ADA+bCR
3.62
Training Generative Adversarial Networks with Limited Data
FQ-GAN
3.19
Feature Quantization Improves GAN Training
StyleGAN3-R
3.07
Alias-Free Generative Adversarial Networks
StyleGAN2
2.84
Analyzing and Improving the Image Quality of StyleGAN
Diffusion StyleGAN2
2.83
Diffusion-GAN: Training GANs with Diffusion
StyleGAN3-T
2.79
Alias-Free Generative Adversarial Networks
MaGNET-StyleGAN2
2.66
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Polarity-StyleGAN2
2.57
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
StyleGAN-XL
2.02
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
StyleSAN-XL
1.61
SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
Very Deep VAE
-
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
Efficient-VDVAE
-
Efficient-VDVAE: Less is more
0 of 20 row(s) selected.
Previous
Next
Image Generation On Ffhq 1024 X 1024 | SOTA | HyperAI