Visual Prompt Tuning On Vtab 1K Structured 8
Metrics
Mean Accuracy
Results
Performance results of various models on this benchmark
| Paper Title | ||
|---|---|---|
| SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 59.23 | Revisiting the Power of Prompt for Visual Tuning |
| SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 58.36 | Revisiting the Power of Prompt for Visual Tuning |
| SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 55.16 | Revisiting the Power of Prompt for Visual Tuning |
| SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 53.46 | Revisiting the Power of Prompt for Visual Tuning |
| GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 49.10 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers |
| VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 42.38 | Visual Prompt Tuning |
| VPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 37.55 | Visual Prompt Tuning |
| GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K) | 36.80 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers |
| VPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 27.50 | Visual Prompt Tuning |
| VPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 26.57 | Visual Prompt Tuning |
0 of 10 row(s) selected.