Command Palette
Search for a command to run...
Gao Huang* Zhuang Liu* Laurens van der Maaten Kilian Q. Weinberger

摘要
近期的研究表明,如果卷积网络包含从接近输入层到接近输出层的较短连接,则可以显著提高网络的深度、准确性和训练效率。本文基于这一观察,引入了密集卷积网络(DenseNet),该网络以前馈方式将每一层与所有其他层相连。传统的L层卷积网络有L个连接——每层与其后续层之间有一个连接——而我们的网络则有L(L+1)/2个直接连接。对于每一层,所有先前层的特征图均作为其输入,而其自身的特征图则作为所有后续层的输入。DenseNets具有多个显著优势:它们缓解了梯度消失问题,增强了特征传播,促进了特征重用,并大幅减少了参数数量。我们对所提出的架构在四个极具竞争力的目标识别基准任务(CIFAR-10、CIFAR-100、SVHN和ImageNet)上进行了评估。DenseNets在大多数任务中取得了显著改进,并且在实现高性能的同时所需的计算量较少。代码和预训练模型可在https://github.com/liuzhuang13/DenseNet 获取。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| breast-tumour-classification-on-pcam | DenseNet-121 (e) | AUC: 0.921 |
| classification-on-indl | DenseNet201 | Average Recall: 90.99% |
| classification-on-ximagenet-12 | DenseNet121 | Robustness Score: 0.9062 |
| crowd-counting-on-ucf-qnrf | Densenet201 | MAE: 163 |
| image-classification-on-cifar-10 | DenseNet (DenseNet-BC-190) | Percentage correct: 96.54 |
| image-classification-on-cifar-100 | DenseNet | Percentage correct: 82.62 |
| image-classification-on-cifar-100 | DenseNet-BC | Percentage correct: 82.82 |
| image-classification-on-gashissdb | DenseNet-169 | Accuracy: 96.90 F1-Score: 98.38 Precision: 99.91 |
| image-classification-on-imagenet | DenseNet-201 | Top 1 Accuracy: 77.42% |
| image-classification-on-imagenet | DenseNet-121 | Top 1 Accuracy: 74.98% |
| image-classification-on-imagenet | DenseNet-169 | Top 1 Accuracy: 76.2% |
| image-classification-on-imagenet | DenseNet-264 | Top 1 Accuracy: 77.85% |
| image-classification-on-svhn | DenseNet | Percentage error: 1.59 |
| medical-image-classification-on-nct-crc-he | DenseNet-169 | Accuracy (%): 94.41 F1-Score: 96.90 Precision: 99.87 Specificity: 99.30 |
| pedestrian-attribute-recognition-on-uav-human | DenseNet | Backpack: 63.9 Gender: 75.0 Hat: 67.2 LCC: 54.6 LCS: 68.9 UCC: 49.8 UCS: 73.0 |