Command Palette
Search for a command to run...

摘要
点云为计算机图形学中的诸多应用提供了灵活的几何表示方式,同时也是大多数三维数据采集设备的原始输出形式。尽管在图形学与视觉领域中,针对点云的手工设计特征早已被提出,但近年来卷积神经网络(CNN)在图像分析中取得的巨大成功,提示我们有必要将CNN的洞察迁移至点云领域。由于点云本身缺乏拓扑信息,因此设计一种能够恢复拓扑结构的模型,将显著增强点云的表示能力。为此,我们提出了一种新型神经网络模块——EdgeConv,该模块适用于基于CNN的点云高层任务,如分类与分割。EdgeConv在每一层网络中动态计算的图结构上进行操作,具有可微性,可无缝集成到现有网络架构中。与现有在外部空间中操作或独立处理每个点的模块相比,EdgeConv具备若干优越特性:它能够融合局部邻域信息;可通过堆叠多层以学习全局形状特征;在多层系统中,特征空间中的相似性可捕捉原始嵌入空间中潜在长距离的语义特性。我们在标准基准数据集(包括ModelNet40、ShapeNetPart和S3DIS)上验证了所提模型的性能。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| 3d-part-segmentation-on-shapenet-part | DGCNN | Instance Average IoU: 85.2 |
| 3d-point-cloud-classification-on-intra | DGCNN | F1 score (5-fold): 0.738 |
| 3d-point-cloud-classification-on-modelnet40 | DGCNN | Mean Accuracy: 90.2 Number of params: 1.81M Overall Accuracy: 92.9 |
| 3d-point-cloud-classification-on-modelnet40-c | DGCNN | Error Rate: 0.259 |
| 3d-point-cloud-classification-on-scanobjectnn | DGCNN | Mean Accuracy: 73.6 OBJ-BG (OA): 82.8 OBJ-ONLY (OA): 86.2 Overall Accuracy: 78.1 |
| few-shot-3d-point-cloud-classification-on-1 | DGCNN | Overall Accuracy: 31.6 Standard Deviation: 9.0 |
| few-shot-3d-point-cloud-classification-on-2 | DGCNN | Overall Accuracy: 40.8 Standard Deviation: 14.6 |
| few-shot-3d-point-cloud-classification-on-3 | DGCNN | Overall Accuracy: 19.85 Standard Deviation: 6.5 |
| few-shot-3d-point-cloud-classification-on-4 | DGCNN | Overall Accuracy: 16.9 Standard Deviation: 1.5 |
| point-cloud-classification-on-pointcloud-c | DGCNN | mean Corruption Error (mCE): 1.000 |
| point-cloud-segmentation-on-pointcloud-c | DGCNN | mean Corruption Error (mCE): 1.000 |
| supervised-only-3d-point-cloud-classification | DGCNN | GFLOPs: 2.4 Number of params (M): 1.8 Overall Accuracy (PB_T50_RS): 78.1 |