Command Palette
Search for a command to run...
Kaiming He Xinlei Chen Saining Xie Yanghao Li Piotr Dollár Ross Girshick

摘要
本文表明,掩码自编码器(Masked Autoencoders, MAE)是适用于计算机视觉的可扩展自监督学习方法。我们的MAE方法设计简洁:对输入图像的随机图像块进行掩码,并重建缺失的像素。该方法基于两个核心设计。首先,我们提出一种非对称的编码器-解码器架构,其中编码器仅处理可见的图像块子集(不包含掩码标记),而解码器则轻量化设计,能够从潜在表示和掩码标记中重建原始图像。其次,我们发现对输入图像进行高比例的掩码(例如75%)能够形成一个具有实际意义且有效的自监督学习任务。将这两个设计相结合,使得我们能够高效且有效地训练大规模模型:训练速度提升3倍或更多,同时显著提高模型精度。该可扩展的方法支持训练高容量模型,且具有优异的泛化能力:例如,一个标准的ViT-Huge模型在仅使用ImageNet-1K数据的方法中达到了最佳准确率(87.8%)。在下游任务中的迁移性能超越了监督预训练方法,并展现出极具前景的可扩展性。
代码仓库
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| domain-generalization-on-imagenet-a | MAE (ViT-H, 448) | Top-1 accuracy %: 76.7 |
| domain-generalization-on-imagenet-c | MAE (ViT-H) | Number of params: 632M mean Corruption Error (mCE): 33.8 |
| domain-generalization-on-imagenet-r | MAE (ViT-H, 448) | Top-1 Error Rate: 33.5 |
| domain-generalization-on-imagenet-sketch | MAE (ViT-H, 448) | Top-1 accuracy: 50.9 |
| image-classification-on-imagenet | MAE (ViT-L) | Top 1 Accuracy: 85.9% |
| image-classification-on-imagenet | MAE (ViT-H, 448) | Number of params: 656M Top 1 Accuracy: 87.8% |
| image-classification-on-imagenet | MAE (ViT-L) | Top 1 Accuracy: 83.6% |
| image-classification-on-imagenet | MAE (ViT-H) | Top 1 Accuracy: 86.9% |
| image-classification-on-inaturalist | MAE (ViT-H, 448) | Top 1 Accuracy: 83.4 |
| image-classification-on-inaturalist-2018 | MAE (ViT-H, 448) | Top-1 Accuracy: 86.8% |
| image-classification-on-inaturalist-2019 | MAE (ViT-H, 448) | Top-1 Accuracy: 88.3 |
| image-classification-on-omnibenchmark | MAE | Average Top-1 Accuracy: 30.6 |
| image-classification-on-places205 | MAE (ViT-H, 448) | Top 1 Accuracy: 66.8 |
| image-classification-on-places365-standard | MAE (ViT-H, 448) | Top 1 Accuracy: 60.3 |
| object-detection-on-coco-minival | MAE (ViT-L, Mask R-CNN) | box AP: 53.3 |
| object-detection-on-coco-minival | MAE (ViT-B, Mask R-CNN) | box AP: 50.3 |
| self-supervised-image-classification-on | MAE (ViT-B) | Number of Params: 80M Top 1 Accuracy: 68.0% |
| self-supervised-image-classification-on | MAE (ViT-L) | Number of Params: 306M Top 1 Accuracy: 75.8% |
| self-supervised-image-classification-on | MAE (ViT-H) | Number of Params: 700M Top 1 Accuracy: 76.6% |
| self-supervised-image-classification-on-1 | MAE (ViT-H/14) | Top 1 Accuracy: 86.9% |
| self-supervised-image-classification-on-1 | MAE (ViT-H/14, 448) | Number of Params: 632M Top 1 Accuracy: 87.8% |
| semantic-segmentation-on-ade20k | MAE (ViT-B, UperNet) | Validation mIoU: 48.1 |
| semantic-segmentation-on-ade20k | MAE (ViT-L, UperNet) | Validation mIoU: 53.6 |
| semantic-segmentation-on-imagenet-s | MAE (ViT-B/16, 224x224, SSL+FT) | mIoU (test): 60.2 mIoU (val): 61.0 |
| semantic-segmentation-on-imagenet-s | MAE (ViT-B/16, 224x224, SSL) | mIoU (test): 37.0 mIoU (val): 38.3 |
| semantic-segmentation-on-imagenet-s | MAE (ViT-B/16, 224x224, SSL, mmseg) | mIoU (test): 40.3 mIoU (val): 40.0 |
| semantic-segmentation-on-imagenet-s | MAE (ViT-B/16, 224x224, SSL+FT, mmseg) | mIoU (test): 61.2 mIoU (val): 61.6 |