HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
三维物体检测
3D Object Detection On Kitti Pedestrians Easy
3D Object Detection On Kitti Pedestrians Easy
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
IPOD
56.92%
IPOD: Intensive Point-based Object Detector for Point Cloud
SVGA-Net
55.21%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
STD
53.08%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
F-ConvNet
52.37%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
Frustrum-PointPillars
51.22 %
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
Frustum PointNets
51.21%
Frustum PointNets for 3D Object Detection from RGB-D Data
AVOD + Feature Pyramid
50.8%
Joint 3D Proposal Generation and Object Detection from View Aggregation
M3DeTR
47.05%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
VoxelNet
39.48%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
0 of 9 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
三维物体检测
3D Object Detection On Kitti Pedestrians Easy
3D Object Detection On Kitti Pedestrians Easy
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
IPOD
56.92%
IPOD: Intensive Point-based Object Detector for Point Cloud
SVGA-Net
55.21%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
STD
53.08%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
F-ConvNet
52.37%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
Frustrum-PointPillars
51.22 %
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
Frustum PointNets
51.21%
Frustum PointNets for 3D Object Detection from RGB-D Data
AVOD + Feature Pyramid
50.8%
Joint 3D Proposal Generation and Object Detection from View Aggregation
M3DeTR
47.05%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
VoxelNet
39.48%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
0 of 9 row(s) selected.
Previous
Next