HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
三维物体检测
3D Object Detection On Kitti Pedestrians Hard
3D Object Detection On Kitti Pedestrians Hard
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
SVGA-Net
44.56%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
IPOD
42.39%
IPOD: Intensive Point-based Object Detector for Point Cloud
STD
41.97%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
F-ConvNet
41.49%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
AVOD + Feature Pyramid
40.88%
Joint 3D Proposal Generation and Object Detection from View Aggregation
Frustum PointNets
40.23%
Frustum PointNets for 3D Object Detection from RGB-D Data
Frustrum-PointPillars
39.28 %
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
M3DeTR
38.75%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
VoxelNet
31.51%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
0 of 9 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
三维物体检测
3D Object Detection On Kitti Pedestrians Hard
3D Object Detection On Kitti Pedestrians Hard
评估指标
AP
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AP
Paper Title
SVGA-Net
44.56%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
IPOD
42.39%
IPOD: Intensive Point-based Object Detector for Point Cloud
STD
41.97%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
F-ConvNet
41.49%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
AVOD + Feature Pyramid
40.88%
Joint 3D Proposal Generation and Object Detection from View Aggregation
Frustum PointNets
40.23%
Frustum PointNets for 3D Object Detection from RGB-D Data
Frustrum-PointPillars
39.28 %
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
M3DeTR
38.75%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
VoxelNet
31.51%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
0 of 9 row(s) selected.
Previous
Next
3D Object Detection On Kitti Pedestrians Hard | SOTA | HyperAI超神经