HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
异常检测
Anomaly Detection On Fashion Mnist
Anomaly Detection On Fashion Mnist
评估指标
ROC AUC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
ROC AUC
Paper Title
GAN based Anomaly Detection in Imbalance Problems
98.6
GAN-based Anomaly Detection in Imbalance Problems
PANDA
95.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Reverse Distillation
95.0
Anomaly Detection via Reverse Distillation from One-Class Embedding
IGD (pre-trained SSL)
94.41
Deep One-Class Classification via Interpolated Gaussian Descriptor
IGD (pre-trained ImageNet)
93.57
Deep One-Class Classification via Interpolated Gaussian Descriptor
Self-Supervised One-class SVM, RBF kernel
92.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
DASVDD
92.6
DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly Detection
Shell-based Anomaly (supervised)
92.1
Shell Theory: A Statistical Model of Reality
IGD (scratch)
92.01
Deep One-Class Classification via Interpolated Gaussian Descriptor
PANDA-OE
91.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised DeepSVDD
84.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
P-KDGAN
0.9293
P-KDGAN: Progressive Knowledge Distillation with GANs for One-class Novelty Detection
0 of 12 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
异常检测
Anomaly Detection On Fashion Mnist
Anomaly Detection On Fashion Mnist
评估指标
ROC AUC
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
ROC AUC
Paper Title
GAN based Anomaly Detection in Imbalance Problems
98.6
GAN-based Anomaly Detection in Imbalance Problems
PANDA
95.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Reverse Distillation
95.0
Anomaly Detection via Reverse Distillation from One-Class Embedding
IGD (pre-trained SSL)
94.41
Deep One-Class Classification via Interpolated Gaussian Descriptor
IGD (pre-trained ImageNet)
93.57
Deep One-Class Classification via Interpolated Gaussian Descriptor
Self-Supervised One-class SVM, RBF kernel
92.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
DASVDD
92.6
DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly Detection
Shell-based Anomaly (supervised)
92.1
Shell Theory: A Statistical Model of Reality
IGD (scratch)
92.01
Deep One-Class Classification via Interpolated Gaussian Descriptor
PANDA-OE
91.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised DeepSVDD
84.8
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
P-KDGAN
0.9293
P-KDGAN: Progressive Knowledge Distillation with GANs for One-class Novelty Detection
0 of 12 row(s) selected.
Previous
Next