HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
Atari 游戏
Atari Games On Atari 2600 Freeway
Atari Games On Atari 2600 Freeway
评估指标
Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Score
Paper Title
Go-Explore
34
First return, then explore
QR-DQN-1
34
Distributional Reinforcement Learning with Quantile Regression
GDI-I3
34
Generalized Data Distribution Iteration
GDI-H3
34
Generalized Data Distribution Iteration
GDI-H3(200M frames)
34
Generalized Data Distribution Iteration
IQN
34
Implicit Quantile Networks for Distributional Reinforcement Learning
GDI-I3
34
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
TRPO-hash
34.0
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
NoisyNet-Dueling
34
Noisy Networks for Exploration
Bootstrapped DQN
33.9
Deep Exploration via Bootstrapped DQN
C51 noop
33.9
A Distributional Perspective on Reinforcement Learning
ASL DDQN
33.9
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
MuZero (Res2 Adam)
33.87
Online and Offline Reinforcement Learning by Planning with a Learned Model
Ape-X
33.7
Distributed Prioritized Experience Replay
Prior noop
33.7
Prioritized Experience Replay
DDQN+Pop-Art noop
33.4
Learning values across many orders of magnitude
DDQN (tuned) noop
33.3
Dueling Network Architectures for Deep Reinforcement Learning
MuZero
33.03
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
DreamerV2
33
Mastering Atari with Discrete World Models
Prior+Duel noop
33.0
Dueling Network Architectures for Deep Reinforcement Learning
0 of 59 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
Atari 游戏
Atari Games On Atari 2600 Freeway
Atari Games On Atari 2600 Freeway
评估指标
Score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Score
Paper Title
Go-Explore
34
First return, then explore
QR-DQN-1
34
Distributional Reinforcement Learning with Quantile Regression
GDI-I3
34
Generalized Data Distribution Iteration
GDI-H3
34
Generalized Data Distribution Iteration
GDI-H3(200M frames)
34
Generalized Data Distribution Iteration
IQN
34
Implicit Quantile Networks for Distributional Reinforcement Learning
GDI-I3
34
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
TRPO-hash
34.0
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
NoisyNet-Dueling
34
Noisy Networks for Exploration
Bootstrapped DQN
33.9
Deep Exploration via Bootstrapped DQN
C51 noop
33.9
A Distributional Perspective on Reinforcement Learning
ASL DDQN
33.9
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
MuZero (Res2 Adam)
33.87
Online and Offline Reinforcement Learning by Planning with a Learned Model
Ape-X
33.7
Distributed Prioritized Experience Replay
Prior noop
33.7
Prioritized Experience Replay
DDQN+Pop-Art noop
33.4
Learning values across many orders of magnitude
DDQN (tuned) noop
33.3
Dueling Network Architectures for Deep Reinforcement Learning
MuZero
33.03
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
DreamerV2
33
Mastering Atari with Discrete World Models
Prior+Duel noop
33.0
Dueling Network Architectures for Deep Reinforcement Learning
0 of 59 row(s) selected.
Previous
Next
Atari Games On Atari 2600 Freeway | SOTA | HyperAI超神经