HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Clothing1M Using
Image Classification On Clothing1M Using
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CurriculumNet
81.5%
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images
Forward
80.27
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
CleanNet w_soft
79.90
CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise
EMLC (k=1)
79.35%
Enhanced Meta Label Correction for Coping with Label Corruption
DMLP-DivideMix
78.23%
Learning from Noisy Labels with Decoupled Meta Label Purifier
FasTEN
77.83%
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
PUDistill
77.70
Training Classifiers that are Universally Robust to All Label Noise Levels
L2B (ResNet-18)
77.5 ± 0.2%
L2B: Learning to Bootstrap Robust Models for Combating Label Noise
MLC
75.78%
Meta Label Correction for Noisy Label Learning
0 of 9 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Clothing1M Using
Image Classification On Clothing1M Using
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CurriculumNet
81.5%
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images
Forward
80.27
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
CleanNet w_soft
79.90
CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise
EMLC (k=1)
79.35%
Enhanced Meta Label Correction for Coping with Label Corruption
DMLP-DivideMix
78.23%
Learning from Noisy Labels with Decoupled Meta Label Purifier
FasTEN
77.83%
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
PUDistill
77.70
Training Classifiers that are Universally Robust to All Label Noise Levels
L2B (ResNet-18)
77.5 ± 0.2%
L2B: Learning to Bootstrap Robust Models for Combating Label Noise
MLC
75.78%
Meta Label Correction for Noisy Label Learning
0 of 9 row(s) selected.
Previous
Next
Image Classification On Clothing1M Using | SOTA | HyperAI超神经