HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Mnist
Image Classification On Mnist
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
ProjectionNet
5.0
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
Zhao et al. (2015) (auto-encoder)
4.76
Stacked What-Where Auto-encoders
DNN-2 (Trainable Activations)
3.6
Trainable Activations for Image Classification
DNN-3 (Trainable Activations)
3.0
Trainable Activations for Image Classification
DNN-5 (Trainable Activations)
2.8
Trainable Activations for Image Classification
PMM (Parametric Matrix Model)
2.62
Parametric Matrix Models
GECCO
1.96
A Single Graph Convolution Is All You Need: Efficient Grayscale Image Classification
Tsetlin Machine
1.8
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic
Perceptron with a tensor train layer
1.8
Tensorizing Neural Networks
ANODE
1.8
Augmented Neural ODEs
MLP (ideal number of groups)
1.67
On the Ideal Number of Groups for Isometric Gradient Propagation
Weighted Tsetlin Machine
1.5
The Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses
CNN Model by Som
1.41
Convolutional Sequence to Sequence Learning
Convolutional Clustering
1.4
Convolutional Clustering for Unsupervised Learning
LeNet 300-100 (Sparse Momentum)
1.26
Sparse Networks from Scratch: Faster Training without Losing Performance
Convolutional PMM (Parametric Matrix Model)
1.01
Parametric Matrix Models
BinaryConnect
1.0
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Explaining and Harnessing Adversarial Examples
0.8
Explaining and Harnessing Adversarial Examples
Sparse Activity and Sparse Connectivity in Supervised Learning
0.8
Sparse Activity and Sparse Connectivity in Supervised Learning
Deep Fried Convnets
0.7
Deep Fried Convnets
0 of 80 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Mnist
Image Classification On Mnist
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
ProjectionNet
5.0
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
Zhao et al. (2015) (auto-encoder)
4.76
Stacked What-Where Auto-encoders
DNN-2 (Trainable Activations)
3.6
Trainable Activations for Image Classification
DNN-3 (Trainable Activations)
3.0
Trainable Activations for Image Classification
DNN-5 (Trainable Activations)
2.8
Trainable Activations for Image Classification
PMM (Parametric Matrix Model)
2.62
Parametric Matrix Models
GECCO
1.96
A Single Graph Convolution Is All You Need: Efficient Grayscale Image Classification
Tsetlin Machine
1.8
The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic
Perceptron with a tensor train layer
1.8
Tensorizing Neural Networks
ANODE
1.8
Augmented Neural ODEs
MLP (ideal number of groups)
1.67
On the Ideal Number of Groups for Isometric Gradient Propagation
Weighted Tsetlin Machine
1.5
The Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses
CNN Model by Som
1.41
Convolutional Sequence to Sequence Learning
Convolutional Clustering
1.4
Convolutional Clustering for Unsupervised Learning
LeNet 300-100 (Sparse Momentum)
1.26
Sparse Networks from Scratch: Faster Training without Losing Performance
Convolutional PMM (Parametric Matrix Model)
1.01
Parametric Matrix Models
BinaryConnect
1.0
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Explaining and Harnessing Adversarial Examples
0.8
Explaining and Harnessing Adversarial Examples
Sparse Activity and Sparse Connectivity in Supervised Learning
0.8
Sparse Activity and Sparse Connectivity in Supervised Learning
Deep Fried Convnets
0.7
Deep Fried Convnets
0 of 80 row(s) selected.
Previous
Next