HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Objectnet
Image Classification On Objectnet
评估指标
Top-1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Top-1 Accuracy
Paper Title
CoCa
82.7
CoCa: Contrastive Captioners are Image-Text Foundation Models
LiT
82.5
LiT: Zero-Shot Transfer with Locked-image text Tuning
BASIC
82.3
Combined Scaling for Zero-shot Transfer Learning
EVA-02-CLIP-E/14+
79.6
EVA-CLIP: Improved Training Techniques for CLIP at Scale
Baseline (ViT-G/14)
79.03
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Model soups (ViT-G/14)
78.52
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
MAWS (ViT-6.5B)
77.9
The effectiveness of MAE pre-pretraining for billion-scale pretraining
MAWS (ViT-2B)
75.8
The effectiveness of MAE pre-pretraining for billion-scale pretraining
MAWS (ViT-H)
72.6
The effectiveness of MAE pre-pretraining for billion-scale pretraining
CLIP
72.3
Learning Transferable Visual Models From Natural Language Supervision
ALIGN
72.2
Combined Scaling for Zero-shot Transfer Learning
WiSE-FT
72.1
Robust fine-tuning of zero-shot models
ViT-e
72.0
PaLI: A Jointly-Scaled Multilingual Language-Image Model
ViT-G/14
70.53
Scaling Vision Transformers
SWAG (ViT H/14)
69.5
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
NS (Eff.-L2)
68.5
Scaling Vision Transformers
RegNetY 128GF (Platt)
64.3
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
LLE (ViT-H/14, MAE, Edge Aug)
60.78
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
SEER (RegNet10B)
60.2
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
ViT H/14 (Platt)
60
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
0 of 106 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像分类
Image Classification On Objectnet
Image Classification On Objectnet
评估指标
Top-1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Top-1 Accuracy
Paper Title
CoCa
82.7
CoCa: Contrastive Captioners are Image-Text Foundation Models
LiT
82.5
LiT: Zero-Shot Transfer with Locked-image text Tuning
BASIC
82.3
Combined Scaling for Zero-shot Transfer Learning
EVA-02-CLIP-E/14+
79.6
EVA-CLIP: Improved Training Techniques for CLIP at Scale
Baseline (ViT-G/14)
79.03
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Model soups (ViT-G/14)
78.52
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
MAWS (ViT-6.5B)
77.9
The effectiveness of MAE pre-pretraining for billion-scale pretraining
MAWS (ViT-2B)
75.8
The effectiveness of MAE pre-pretraining for billion-scale pretraining
MAWS (ViT-H)
72.6
The effectiveness of MAE pre-pretraining for billion-scale pretraining
CLIP
72.3
Learning Transferable Visual Models From Natural Language Supervision
ALIGN
72.2
Combined Scaling for Zero-shot Transfer Learning
WiSE-FT
72.1
Robust fine-tuning of zero-shot models
ViT-e
72.0
PaLI: A Jointly-Scaled Multilingual Language-Image Model
ViT-G/14
70.53
Scaling Vision Transformers
SWAG (ViT H/14)
69.5
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
NS (Eff.-L2)
68.5
Scaling Vision Transformers
RegNetY 128GF (Platt)
64.3
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
LLE (ViT-H/14, MAE, Edge Aug)
60.78
A Whac-A-Mole Dilemma: Shortcuts Come in Multiples Where Mitigating One Amplifies Others
SEER (RegNet10B)
60.2
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
ViT H/14 (Platt)
60
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
0 of 106 row(s) selected.
Previous
Next