HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像超分辨率
Image Super Resolution On Set5 3X Upscaling
Image Super Resolution On Set5 3X Upscaling
评估指标
PSNR
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PSNR
Paper Title
HMA†
35.35
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
DRCT-L
35.32
DRCT: Saving Image Super-resolution away from Information Bottleneck
HAT-L
35.28
Activating More Pixels in Image Super-Resolution Transformer
HAT_FIR
35.21
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
Hi-IR-L
35.2
Hierarchical Information Flow for Generalized Efficient Image Restoration
CPAT+
35.19
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
DRCT
35.18
DRCT: Saving Image Super-resolution away from Information Bottleneck
HAT
35.16
Activating More Pixels in Image Super-Resolution Transformer
CPAT
35.16
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
SwinFIR
35.15
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
EDT-B
35.13
On Efficient Transformer-Based Image Pre-training for Low-Level Vision
LTE
34.89
Local Texture Estimator for Implicit Representation Function
DRLN+
34.86
Densely Residual Laplacian Super-Resolution
HAN+
34.85
Single Image Super-Resolution via a Holistic Attention Network
CSNLN
34.74
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
FACD
34.729
Feature-domain Adaptive Contrastive Distillation for Efficient Single Image Super-Resolution
SRFBN
34.70
Feedback Network for Image Super-Resolution
ML-CrAIST
34.7
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
SwinOIR
34.69
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
PMRN+
34.65
Sequential Hierarchical Learning with Distribution Transformation for Image Super-Resolution
0 of 32 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
图像超分辨率
Image Super Resolution On Set5 3X Upscaling
Image Super Resolution On Set5 3X Upscaling
评估指标
PSNR
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PSNR
Paper Title
HMA†
35.35
HMANet: Hybrid Multi-Axis Aggregation Network for Image Super-Resolution
DRCT-L
35.32
DRCT: Saving Image Super-resolution away from Information Bottleneck
HAT-L
35.28
Activating More Pixels in Image Super-Resolution Transformer
HAT_FIR
35.21
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
Hi-IR-L
35.2
Hierarchical Information Flow for Generalized Efficient Image Restoration
CPAT+
35.19
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
DRCT
35.18
DRCT: Saving Image Super-resolution away from Information Bottleneck
HAT
35.16
Activating More Pixels in Image Super-Resolution Transformer
CPAT
35.16
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
SwinFIR
35.15
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
EDT-B
35.13
On Efficient Transformer-Based Image Pre-training for Low-Level Vision
LTE
34.89
Local Texture Estimator for Implicit Representation Function
DRLN+
34.86
Densely Residual Laplacian Super-Resolution
HAN+
34.85
Single Image Super-Resolution via a Holistic Attention Network
CSNLN
34.74
Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
FACD
34.729
Feature-domain Adaptive Contrastive Distillation for Efficient Single Image Super-Resolution
SRFBN
34.70
Feedback Network for Image Super-Resolution
ML-CrAIST
34.7
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
SwinOIR
34.69
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
PMRN+
34.65
Sequential Hierarchical Learning with Distribution Transformation for Image Super-Resolution
0 of 32 row(s) selected.
Previous
Next
Image Super Resolution On Set5 3X Upscaling | SOTA | HyperAI超神经