HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
语义对应
Semantic Correspondence On Pf Pascal
Semantic Correspondence On Pf Pascal
评估指标
PCK
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PCK
Paper Title
GeoAware-SC (Supervised, AP-10K P.T.)
95.7
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
GeoAware-SC (Supervised)
95.1
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
CATs++
93.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
SD+DINO (Supervised)
93.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
CATs
92.6
CATs: Cost Aggregation Transformers for Visual Correspondence
VAT
92.3
Cost Aggregation Is All You Need for Few-Shot Segmentation
VAT (ECCV)
92.3
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
CHM
91.6
Convolutional Hough Matching Networks
DHPF
90.7
Learning to Compose Hypercolumns for Visual Correspondence
SCOT
88.8
Semantic Correspondence as an Optimal Transport Problem
ANCNet
88.7
Correspondence Networks with Adaptive Neighbourhood Consensus
HPF
88.3
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
GeoAware-SC (Zero-Shot)
82.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
NC-Net
-
Neighbourhood Consensus Networks
0 of 14 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
语义对应
Semantic Correspondence On Pf Pascal
Semantic Correspondence On Pf Pascal
评估指标
PCK
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
PCK
Paper Title
GeoAware-SC (Supervised, AP-10K P.T.)
95.7
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
GeoAware-SC (Supervised)
95.1
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
CATs++
93.8
CATs++: Boosting Cost Aggregation with Convolutions and Transformers
SD+DINO (Supervised)
93.6
A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence
CATs
92.6
CATs: Cost Aggregation Transformers for Visual Correspondence
VAT
92.3
Cost Aggregation Is All You Need for Few-Shot Segmentation
VAT (ECCV)
92.3
Cost Aggregation with 4D Convolutional Swin Transformer for Few-Shot Segmentation
CHM
91.6
Convolutional Hough Matching Networks
DHPF
90.7
Learning to Compose Hypercolumns for Visual Correspondence
SCOT
88.8
Semantic Correspondence as an Optimal Transport Problem
ANCNet
88.7
Correspondence Networks with Adaptive Neighbourhood Consensus
HPF
88.3
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
GeoAware-SC (Zero-Shot)
82.6
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
NC-Net
-
Neighbourhood Consensus Networks
0 of 14 row(s) selected.
Previous
Next
Semantic Correspondence On Pf Pascal | SOTA | HyperAI超神经