HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
交通标志识别
Traffic Sign Recognition On Gtsrb
Traffic Sign Recognition On Gtsrb
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CNN with 3 Spatial Transformers
99.71%
Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods
Sill-Net
99.68%
Sill-Net: Feature Augmentation with Separated Illumination Representation
SeqNet
99.66%
SeqNet: Sequential Networks for One-Shot Traffic Sign Recognition With Transfer Learning
MicronNet (fp16)
98.9%
MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-time Embedded Traffic Sign Classification
SEER (RegNet10B)
90.71%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
0 of 5 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
交通标志识别
Traffic Sign Recognition On Gtsrb
Traffic Sign Recognition On Gtsrb
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CNN with 3 Spatial Transformers
99.71%
Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods
Sill-Net
99.68%
Sill-Net: Feature Augmentation with Separated Illumination Representation
SeqNet
99.66%
SeqNet: Sequential Networks for One-Shot Traffic Sign Recognition With Transfer Learning
MicronNet (fp16)
98.9%
MicronNet: A Highly Compact Deep Convolutional Neural Network Architecture for Real-time Embedded Traffic Sign Classification
SEER (RegNet10B)
90.71%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
0 of 5 row(s) selected.
Previous
Next