HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
视觉问答 (VQA)
Visual Question Answering On Vqa V2 Val
Visual Question Answering On Vqa V2 Val
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
BLIP-2 ViT-G FlanT5 XXL (zero-shot)
65.2
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
PNP-VQA
63.3
Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training
BLIP-2 ViT-G FlanT5 XL (zero-shot)
63.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-L FlanT5 XL (zero-shot)
62.6
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 6.7B (zero-shot)
54.3
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 2.7B (zero-shot)
53.5
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-L OPT 2.7B (zero-shot)
50.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Few VLM (zero-shot)
47.7
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
MetaLM
41.1
Language Models are General-Purpose Interfaces
VLKD(ViT-B/16)
38.6
Enabling Multimodal Generation on CLIP via Vision-Language Knowledge Distillation
Frozen
29.5
Multimodal Few-Shot Learning with Frozen Language Models
0 of 11 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
视觉问答 (VQA)
Visual Question Answering On Vqa V2 Val
Visual Question Answering On Vqa V2 Val
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
BLIP-2 ViT-G FlanT5 XXL (zero-shot)
65.2
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
PNP-VQA
63.3
Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training
BLIP-2 ViT-G FlanT5 XL (zero-shot)
63.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-L FlanT5 XL (zero-shot)
62.6
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 6.7B (zero-shot)
54.3
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 2.7B (zero-shot)
53.5
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-L OPT 2.7B (zero-shot)
50.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Few VLM (zero-shot)
47.7
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
MetaLM
41.1
Language Models are General-Purpose Interfaces
VLKD(ViT-B/16)
38.6
Enabling Multimodal Generation on CLIP via Vision-Language Knowledge Distillation
Frozen
29.5
Multimodal Few-Shot Learning with Frozen Language Models
0 of 11 row(s) selected.
Previous
Next