HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Food 101
Fine Grained Image Classification On Food 101
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CAP
98.6
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
EffNet-L2 (SAM)
96.18
Sharpness-Aware Minimization for Efficiently Improving Generalization
ALIGN
95.88
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
DoD (SwinV2-B)
94.9
Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition
CSWin-L
93.81
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
Grafit (RegNet-8GF)
93.7
Grafit: Learning fine-grained image representations with coarse labels
VOLO-D5
93.66
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
EfficientNet-B7
93.0
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Assemble-ResNet-FGVC-50
92.5
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
µ2Net+ (ViT-L/16)
91.47
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
NAT-M4
89.4
Neural Architecture Transfer
NAT-M3
89.0
Neural Architecture Transfer
NAT-M2
88.5
Neural Architecture Transfer
NAT-M1
87.4
Neural Architecture Transfer
ImageNet + iNat on WS-DAN
-
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
0 of 15 row(s) selected.
Previous
Next
HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
服务条款
隐私政策
中文
HyperAI
HyperAI超神经
Toggle Sidebar
全站搜索…
⌘
K
Command Palette
Search for a command to run...
算力平台
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Food 101
Fine Grained Image Classification On Food 101
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
CAP
98.6
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
EffNet-L2 (SAM)
96.18
Sharpness-Aware Minimization for Efficiently Improving Generalization
ALIGN
95.88
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
DoD (SwinV2-B)
94.9
Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition
CSWin-L
93.81
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
Grafit (RegNet-8GF)
93.7
Grafit: Learning fine-grained image representations with coarse labels
VOLO-D5
93.66
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
EfficientNet-B7
93.0
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Assemble-ResNet-FGVC-50
92.5
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
µ2Net+ (ViT-L/16)
91.47
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
NAT-M4
89.4
Neural Architecture Transfer
NAT-M3
89.0
Neural Architecture Transfer
NAT-M2
88.5
Neural Architecture Transfer
NAT-M1
87.4
Neural Architecture Transfer
ImageNet + iNat on WS-DAN
-
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
0 of 15 row(s) selected.
Previous
Next